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Öznur Bulca Barış Kıcıman
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Abstract. This project aims to design a radar-based detection system that uti-
lizes nonlinear signal processing techniques and artificial neural networks (ANNs)
to improve target detection performance in short-range environments. A 60 GHz
Frequency Modulated Continuous Wave (FMCW) radar test kit is used to detect
specific targets such as humans and drones. The project replaces the conventional
CFAR detector typically used in FMCW radar systems with a neural network-
based approach. A Fully Convolutional Network (FCN), consisting of feature
extraction and classification modules, is employed to perform detection on the
Range-Azimuth map generated by the radar. A simulation environment is de-
veloped using MATLAB to generate synthetic Range-Azimuth data and train the
neural network. Real-world testing is conducted using AWR6843ISK sensor kits
provided by METEKSAN Defence Inc. to validate the network’s performance.
The project is divided into three main work packages: data acquisition and prepa-
ration, neural network development and training, and performance evaluation.
The test procedure includes simulations, hardware testing, and real-world valida-
tion. Upon completion, this project is expected to provide METEKSAN with an
advanced, efficient, and accurate radar solution for target detection and classifi-
cation, with the goal of achieving at least 90% detection accuracy and superior
performance compared to traditional CFAR-based methods.

65



PROJECT DESCRIPTION

This project aims to develop a next-generation radar system that enhances di-
rect target detection through the use of non-linear signal processing techniques and
artificial neural networks (ANNs). This project’s main motivation is to overcome
the limitations of conventional radar detection algorithms, especially the Constant
False Alarm Rate (CFAR) detector, which is widely used but prone to false alarms
and underperformance in cluttered or dynamic environments. METEKSAN aims
to replace this conventional approach with a novel deep learning-based radar de-
tection architecture, enabling highly accurate detection of short-range targets such
as humans and drones. Upon completion of the project, METEKSAN will gain
access to a customizable, intelligent radar solution that performs with at least 90%
detection accuracy and is suitable for both defense and civilian applications.

Currently, CFAR-based algorithms are the standard in most FMCW radar sys-
tems, which adjust thresholds based on local noise statistics to detect targets ef-
ficiently. However, they encounter challenges due to clutter arising from non-
stationary noise, closely spaced targets, and rapidly changing environments. Ad-
ditionally, commercial radar systems often have fixed architectures and proprietary
software, limiting reconfigurability and adaptability for research or custom appli-
cations. In response, this project introduces a novel approach by integrating a Fully
Convolutional Network (FCN) into the radar processing pipeline, enabling end-to-
end target detection directly from the Range-Azimuth map. This not only improves
detection accuracy but also allows dynamic adaptation to new data patterns. While
recent deep learning methods have advanced radar detection by replacing CFAR
with neural networks on Range-Doppler or Range-Angle maps [1], [2], many are
too complex for real-time deployment on constrained hardware or are tailored to
specific frequencies, datasets, or applications, reducing generalizability. Some
rely on oversimplified simulated data, limiting the implementability. In contrast,
this project develops a lightweight CNN optimized for 60 GHz FMCW radar and
trained on MATLAB-simulated Range-Azimuth data, aiming for efficient, accurate,
and real-time target detection in practical scenarios.

The system is developed using a 60 GHz FMCW radar test kit provided by
METEKSAN, with three main stages: data acquisition, neural network develop-
ment, and performance evaluation. Synthetic Range-Azimuth maps are generated
in MATLAB for initial training, while real radar data from the AWR6843ISK sen-
sor are used for testing. The system is evaluated through simulation, hardware
testing, and field deployment. Unlike existing systems, this solution is repro-
grammable, adaptable, and suitable for various radar environments, offering en-
hanced performance and usability.

The system is designed to meet the system requirements set by METEKSAN us-
ing both simulated and hardware-acquired Range-Azimuth maps. It operates within
a 60–64 GHz frequency range, with a maximum unambiguous range of 3.0 m and
a sampling rate of 2200 ksps. The neural network must detect the presence of a
target with at least 90% accuracy on both training and validation sets, match or ex-
ceed CFAR performance, and achieve a range estimation RMSE ≤ 0.3 m and R² ≥
80%. Results are visualized via heatmaps and performance-scored classifications.
The model generalizes across environments and target types, and the architecture
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must be lightweight enough for FPGA deployment. Overall, the system outper-
forms traditional CFAR methods in adaptability, accuracy, and usability.

FIGURE 1. Big Picture

The designed system, shown in Figure ??, consists of three main components:
Data Acquisition, Neural Network Development, and optional Real-Time Detec-
tion and Object Classification. Data Acquisition includes both synthetic data gen-
eration—using MATLAB to create Range-Angle and Range-Doppler maps—and
real-life data collection, which involves detailing hardware components, voltage
requirements, connection types, and operating environments. This dual approach
provides a comprehensive dataset for training and testing. In the Neural Network
Development phase, synthetic data is used for initial training, with real-life data
incorporated to refine performance and improve accuracy. Finally, in the optional
Real-Time Detection phase, results are fed into a classification network, enabling
real-time object detection and classification.

MILESTONES

1. Data Collection and Preparation: Simulation parameters based on AWR6843
radar (60-64 GHz, 3TX/4RX antennas, 2200 ksps sampling rate), synthetic Range-
Angle maps generated with MATLAB. Beamforming for 9 angle cells (-60° to
60°). Real-world data captured with AWR6843ISK and DCA1000EVM in various
environments, processed with windowing and thresholding.

2. Neural Network Development: Fully Convolutional Network (FCN) with
encoder-decoder architecture for pixel-wise classification. Three convolutional lay-
ers (32, 64, 128 filters) with LeakyReLU and transposed convolutions. Input: (128,
9, 1) Range-Angle map; output: probability map for target detection. Achieved
99.84% accuracy and 99.99% R² score for range estimation on simulation data.
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3. Performance Evaluation: Testing with simulation and hardware datasets, re-
sulting in 99.25% classification accuracy, precision, recall, F1-score, 0.03m RMSE
for range estimation, 99.59% R² score. Exceeded initial goals, outperforming
CFAR detection in complex environments.

4. System Integration: Integrated hardware data acquisition, simulation pro-
cessing, and neural network inference. Interactive UI for range and angle inputs,
triggering a workflow: MATLAB generates maps, Python-based neural network
performs detection, results visualized with performance metrics.

DESIGN DESCRIPTION

Our solution strategy for direct radar target detection combines advanced signal
processing techniques with artificial neural networks. The implementation follows
three main stages: data acquisition and preparation, neural network development,
and performance evaluation.

Overall System Architecture. The system architecture integrates hardware data
acquisition with software processing components. Raw radar data collected from
the AWR6843ISK flows through several processing stages before reaching the neu-
ral network for classification. This architecture enables both offline testing with
pre-recorded data and potential real-time implementation.

Data Acquisition and Preparation.

Simulation Environment. The simulation environment was designed to generate re-
alistic Range-Angle maps that closely match the characteristics of the AWR6843ISK
radar hardware. Key components of the environment include waveform generation
with parameters matching the radar’s specifications (3461 MHz bandwidth, 55.8
µs chirp duration) and beamforming to obtain 9 discrete angle cells spanning from
-60° to 60°. Ground truth generation was done using thresholding techniques to
create training labels.

Hardware Setup. The hardware data acquisition system consists of:
• AWR6843ISK radar sensor (60-64 GHz, 3 TX and 4 RX antennas)
• DCA1000EVM for raw ADC data capture
• MMWAVEICBOOST carrier card for interfacing
• Configuration via mmWave Studio with sampling rate of 2200 ksps

Data collection was performed in both indoor and outdoor environments to min-
imize interference and noise. We found that data collection in outdoors provided
cleaner data with less self-interference at zero range.

Neural Network Architecture.

Fully Convolutional Network Design. We designed a Fully Convolutional Network
(FCN) with an encoder-decoder architecture for Range-Angle map input. The en-
coder includes three convolutional layers (32, 64, 128 filters) with LeakyReLU ac-
tivation, max pooling (2×3), and batch normalization with a 0.3 dropout rate. The
decoder uses transposed convolutions (128, 64, 32 filters) with skip connections.
The output layer is a single-filter transposed convolution with sigmoid activation,
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producing a (128, 9, 1) probability map. With 870,689 parameters, the model is
compact enough for FPGA deployment while maintaining high performance.

Training Methodology. The network was trained using a dataset split of 966 train-
ing, 208 validation, and 207 test Range-Azimuth maps. A binary cross-entropy loss
function was used with the Adam optimizer at a learning rate of 1e-4. The model
was trained for 50 epochs with a batch size of 32. Data augmentation techniques
were applied to improve generalization. Ground truth labels were generated by
thresholding the simulation data at 80 dB and the hardware data at 95 dB.

Performance Evaluation Methodology. To evaluate our system’s performance,
we implemented a comprehensive testing framework that included both classifica-
tion and estimation metrics. Classification performance was assessed using accu-
racy, precision, recall, and F1-score on a pixel-wise basis, while range and angle
estimation accuracy were evaluated using the R² score and RMSE. Testing was con-
ducted on both simulation-generated maps and real hardware-captured data. For
benchmarking, our results were directly compared with CFAR detection outputs
on identical datasets. Range and angle estimates were obtained by identifying the
center of mass of the predicted target region after thresholding the model’s output
probability map.

Tools and Equipment. We used the following the following tools and equipment
in our implementation:

• Hardware:
– AWR6843ISK sensor (60-64 GHz, 3TX/4RX antennas)
– DCA1000EVM data capture card
– MMWAVEICBOOST carrier card

• Software:
– MATLAB for simulation and data processing
– Python with TensorFlow/Keras for neural network implementation
– mmWave Studio for radar configuration and data acquisition
– Wireshark for network packet analysis during data collection

RESULTS AND PERFORMANCE EVALUATION

Our neural network-based radar target detection system was evaluated using both
simulation and hardware datasets. This section presents the system requirements
and compares our approach with traditional CFAR detection methods.

Classification Performance. The FCN model achieved an excellent classification
performance on both simulation and hardware datasets, as summarized in Table 1.

TABLE 1. Classification Performance Metrics

Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Simulation 99.84 84.86 95.49 89.86
Hardware 99.25 – – –
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The high classification accuracy demonstrates the model’s effectiveness in dis-
tinguishing between target and background pixels. Notably, the model maintained
its performance when tested on real hardware data, showing only a slight decrease
in accuracy from 99.84% to 99.25%. This indicates strong generalizability, which
is critical for real-world deployment.

Range and Angle Estimation. Range and angle estimation accuracy are crucial
metrics for radar target detection. Our model achieved successful range and an-
gle estimation performance, as shown in Table 2. The comparison plot for range
estimation of both cases is given in Figure 2.

TABLE 2. Range and Angle Estimation Performance

Dataset Range R² (%) Range RMSE (m) Angle R² (%) Angle RMSE (◦)
Simulation 99.99 0.023 96.05 7.40
Hardware 99.59 0.030 75.00 16.20

(a) Simulation results (b) Hardware results

FIGURE 2. Range estimation results for both datasets

The lower performance in angle estimation, especially with hardware data, can
be attributed to several factors: the limited angular resolution, with only 9 an-
gle bins compared to 128 range bins; hardware-specific challenges such as self-
interference and environmental reflections; and the greater sensitivity of angle es-
timation to noise and interference. Despite these challenges, the range estimation
performance exceeds our requirements by a significant margin, with RMSE values
well below the 0.3m threshold specified in the project requirements.

Comparison with CFAR Detection. To evaluate the advantages of our neural net-
work approach, we compared it with the conventional CFAR detection method us-
ing identical datasets. Our neural network-based approach demonstrated several
advantages over CFAR, including higher detection accuracy, especially in scenar-
ios with multiple targets or complex environments. It also showed improved ro-
bustness to noise and interference, better generalization to varied environmental
conditions, and more precise range estimation with a lower RMSE.
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System Robustness. We evaluated our system’s performance across different en-
vironmental conditions and target scenarios to assess its robustness. Indoor ex-
periments showed that outdoor data collection provided cleaner signals with less
interference, and the self-interference at zero range was less pronounced outdoors,
resulting in improved detection performance. The system maintained consistent
performance across various target ranges within the 6.7 m detection limit, though
slight degradation in angle estimation was observed for targets near ±60° which
correspond to the edges of the FOV of the radar regarding radar’s limited angular
resolution of 15°. Additionally, it is concluded that the neural network’s inference
time is suitable for real-time applications when implemented on appropriate hard-
ware.

Our results demonstrate that the neural network-based approach significantly
outperforms traditional CFAR detection methods while meeting or exceeding all
specified performance requirements. The system shows excellent potential for
practical deployment in short-range radar applications where accurate target de-
tection is critical.

CONCLUSIONS AND FUTURE DIRECTIONS

In this project, we developed a neural network-based radar target detection sys-
tem designed to replace the traditional CFAR algorithm in FMCW radar work-
flows. By replacing the conventional CFAR-based detection pipeline with a Fully
Convolutional Network (FCN), we achieved high-performance target detection and
localization on Range-Azimuth maps. Our model was trained on both simulated
data generated in MATLAB and real-world data collected using AWR6843ISK
radar hardware. Key accomplishments include a beamforming-based simulation
pipeline, a robust neural network architecture that surpassed CFAR in accuracy, and
successful range-angle estimation performance aligned with system specifications.
Our FCN model achieved over 90% classification accuracy, with range and angle
estimation RMSE values below 0.3 meters, meeting the defined performance cri-
teria and demonstrating superior accuracy compared to conventional CFAR-based
methods. These results validate the effectiveness of the model in both simulated
and real-world scenarios.

In the future, the designed system could be implemented on FPGA platforms to
enable real-time detection capabilities in real radar systems. Furthermore, the neu-
ral network architecture could be extended to support object classification, allowing
the identification of different target types. These developments would enhance the
system’s applicability in defense, automotive, and security domains, and could lead
to further research opportunities, academic publications, and potential commercial-
ization or patenting of the technology.
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