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Abstract. This project’s primary goal is to convert visible images (RGB) into
infrared (IR) images, which have essential uses in fields including remote sens-
ing and surveillance. Maintaining physical consistency between the RGB and IR
modalities is difficult because of the significant variances between them. This
research uses machine learning and image processing techniques to solve the is-
sue and accomplish precise RGB-to-IR image translation. The research intends
to use models that can learn cross-domain mappings by investigating highly ref-
erenced papers on image-to-image translation. Using the DAGAN model with
segmented inputs and corresponding infrared images is the main solution strat-
egy. Segmentation maps are obtained by using MSEG and a custom dataset that
has been created from Coaxials, SMOD, Roadscenes, Camel, MSRS and Kaist.
A test set has been created by randomly selecting 300 photos from this specified
dataset. Also, to ensure physical consistency, the emissivity information from the
Heat-assisted detection and ranging paper has been implemented in DAGAN. To
ensure robustness and fidelity in translated images, the performance was evalu-
ated by using PSNR, SSIM, MAE, FID and LPIPS scores as metrics. An interface
that receives RGB input and outputs the image’s infrared version was designed.
The designed model will be assessed using test data. The anticipated results in-
clude achieving performance comparable to, and potentially surpassing, existing
models in the literature based on evaluation metrics.
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PROJECT DESCRIPTION

This project addresses a critical challenge faced by our company, TÜBİTAK
BİLGEM İLTAREN, in the domain of airborne surveillance systems—namely, the
difficulty of deploying infrared (IR) cameras on lightweight aerial platforms due to
cost, size, power consumption, and operational limitations. The goal is to develop
a software solution that translates visible spectrum (RGB) images into synthetic
IR images using deep learning. This enables IR-like vision in situations where
using actual IR sensors is infeasible. The outcome of the project is a functioning
model and a user-friendly interface that allows engineers to input RGB images and
generate realistic IR images in real time.

The motivation behind the project stems from the high cost and impracticality
of IR cameras, especially for small-scale or mobile applications such as UAVs.
IR imaging plays a vital role in national defense by allowing visibility in low-
light or foggy conditions—making it indispensable for border monitoring, mili-
tary operations, and nighttime surveillance. However, building large, high-quality
IR datasets is expensive and slow. Existing solutions like infrared generative ad-
versarial network (IRGAN), multimodal unsupervised image-to-image translation
(MUNIT), or unpaired image-to-image translation using cycle-consistent adversar-
ial networks (CycleGAN) offer some capabilities in RGB-to-IR translation but lack
physical consistency and domain-specific accuracy, particularly in defense-critical
use cases.

To address this gap, our project introduces a hybrid solution that combines se-
mantic understanding and physical realism. The core idea is to use a segmentation-
driven approach where an RGB image is first segmented using Multi-domain Se-
mantic Segmentation (MSEG) [1], a high-performance semantic segmentation model.
The segmentation map is then used as input to Dual Attention Generative Adver-
sarial Networks (DAGAN) [2], which is trained to synthesize IR images from seg-
mentation data. What differentiates our approach from existing models is the in-
tegration of physical properties into the training pipeline—specifically, emissivity
values derived from the Heat-assisted detection and ranging (HADAR) [3] model.
This allows the generated IR images to better reflect the real-world thermal behav-
ior of objects.

From a system design perspective, our architecture comprises three primary
stages: semantic segmentation (via MSEG), emissivity map construction (using
material-object mapping), and image synthesis (via DAGAN). Additionally, edge
maps from the original RGB image are incorporated to enhance boundary defi-
nition. The system was trained on a diverse, custom-compiled dataset consisting
of over 3,000 paired RGB-IR images. During testing, the model produced high-
quality IR outputs even on out-of-distribution inputs, confirming strong generaliza-
tion capability.

The final deliverable includes a graphical user interface (GUI) built with Qt De-
signer in Python. It supports multiple image formats (PNG, JPEG), allows for reso-
lution selection, shows side-by-side comparisons of input and output, and saves re-
sults in user-defined directories. It also logs processing statistics and, when ground-
truth IR is available, calculates performance metrics such as Peak signal-to-noise
ratio (PSNR), Structural similarity index measure (SSIM), and learned perceptual
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image patch similarity (LPIPS). The system meets all functional and non-functional
requirements and operates smoothly even on mid-range laptops using Windows
Subsystem for Linux (WSL).

FIGURE 1. Big Picture (Overview of the system pipeline includ-
ing segmentation, emissivity mapping, edge extraction, and IR
generation.)

MILESTONES

There were six milestones achieved in the project.
• Milestone 1 (Method Selection): Completed an extensive literature review

and empirical evaluation of existing image-to-image translation methods.
Finalized DAGAN as the primary model due to its suitability for semantic-
to-image synthesis and compatibility with segmentation-based inputs.

• Milestone 2 (Initial DAGAN implementation): Trained DAGAN using
initial segmentation maps obtained from RGB images and corresponding
IR ground truths. This marked the first working version of our end-to-end
RGB-to-IR image translation pipeline.

• Milestone 3 (Dataset collection and segmentation): 10,000+ paired RGB-
IR images processed, with 3,000 paired RGB-IR images the MSEG seg-
mentation model has been chosen.

• Milestone 4 (Model Finalization): Integrated emissivity maps from HADAR
into the DAGAN pipeline and trained the final model on an expanded and
diverse dataset of over 3000 paired images. Achieved high perceptual qual-
ity and improved generalization.

• Milestone 5 (Benchmarking): Benchmarked the final model against promi-
nent alternatives (Pix2Pix [4], CycleGAN [5], IRGAN [6], IRFormer [7],
PID [8], and MUNIT [9]). Our model demonstrated better performance on
key metrics FID, and LPIPS.
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• Milestone 6 (User-Interface Development): Developed a fully functional
user interface enabling real-time RGB-to-IR translation. The interface sup-
ports image previews, resolution settings, metric display, and IR-ground
truth comparisons, making the system accessible for non-expert users.

DESIGN DESCRIPTION

The solution architecture consists of three main stages. First, RGB images are
passed through a segmentation model (MSEG) to obtain semantic maps. These
maps are then mapped to a reduced taxonomy of 19 classes for compatibility with
the image synthesis model. Next, material-specific emissivity values are assigned
to each segmented class using a lookup strategy inspired by HADAR, resulting
in a spatial emissivity map. Finally, both the segmentation and emissivity maps,
along with edge maps derived from the RGB image, are fed into DAGAN, which
generates the synthetic IR image.

Emissivity values were derived from the HADAR model’s dataset, which pro-
vides mean values for common materials such as asphalt, concrete, vegetation, and
human skin. Using semantic class-to-material mapping, each segmented region in
the image was assigned a physical emissivity value, resulting in a per-pixel emis-
sivity map. This map served as an additional input channel to DAGAN, enriching
the model’s capacity to generate thermally plausible outputs.

The training process was performed using PyTorch on Google Colab Pro with
NVIDIA V100 GPUs. The final model was optimized using a combination of
loss functions: adversarial loss for realism, feature matching loss for stability, and
perceptual loss to preserve structure. The user interface was developed using Qt
Designer in Python and deployed on a Windows machine with WSL for running
the Linux-based MSEG model.

A screenshot of the final interface is shown in Figure 2, which includes features
such as folder selection, resolution control, image previews, console feedback, and
support for optional ground-truth comparison.

RESULTS AND PERFORMANCE EVALUATION

To assess the effectiveness of our RGB-to-IR image translation system, we con-
ducted a thorough evaluation using both quantitative metrics and qualitative vi-
sual inspection. The final version of our model—based on DAGAN, MSEG, and
emissivity-enhanced inputs—was tested on a curated dataset of 300 unseen RGB-
IR image pairs. This dataset was specifically separated to ensure unbiased evalua-
tion of the model’s performance under both familiar and out-of-distribution condi-
tions.

Quantitative Evaluation:
We benchmarked our system against six well-known RGB-to-IR image transla-

tion models. Pix2Pix, MUNIT, CycleGAN, IRGAN, IRFORMER , and PID. The
evaluation consisted of industry-standard metrics. These include PSNR and MAE
to measure reconstruction accuracy, SSIM to assess structural similarity, and FID
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FIGURE 2. Graphical User Interface (Displays RGB input, seg-
mentation map, and generated IR image.)

and LPIPS to evaluate the realism and perceptual closeness of the synthesized im-
ages. The following table illustrates the benchmark results.

TABLE 1. Benchmark Results of Our Model vs. Alternatives

Model FID↓ PSNR↑ SSIM↑ MAE↓ LPIPS↓
DAGAN (Ours) 66.96 23.59 0.75 0.049 0.31
IRGAN 75.72 24.28 0.76 0.045 0.32
Pix2Pix 106.22 21.51 0.66 0.060 0.45
CycleGAN 172.91 12.70 0.38 0.204 0.53
MUNIT 119.49 9.88 0.26 0.332 0.55
IRFORMER 353.73 16.89 0.65 0.121 0.59
PID 131.45 17.21 0.45 0.105 0.51

As shown in Table 1, our model achieved the best performance in perceptual
metrics—FID and LPIPS—which are critical for evaluating visual realism. While
IRGAN slightly outperformed in SSIM and MAE, these pixel-wise metrics are
known to be less reliable for perceptual tasks. Thus, DAGAN offers a better balance
between semantic structure and realistic IR appearance.

Qualitative Evaluation:
To complement the numerical results, we visually examined outputs on both in-

distribution and out-of-distribution images. Figure 3 presents a selection of RGB
input, its generated IR output, and ground-truth IR image. The model successfully
captured fine thermal gradients and responded well to different lighting and object
configurations, especially in the case of human detection and material separation.
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FIGURE 3. Generated IR Samples (Examples of segmentation
map, ground-truth IR image (middle), and generated IR (right)
from test set.)

Furthermore, the model was tested on real-world images captured by smart-
phones around the campus, which were not part of the training distribution. It
performed reliably, correctly identifying people, vehicles, and roads, and assigning
plausible thermal values based on learned patterns and emissivity data.

FIGURE 4. Generated IR Samples (Examples of RGB input, seg-
mentation map (middle), and generated IR (right).)

Critical Assessment:
From a performance perspective, the integration of HADAR-based emissivity

information has clearly improved the physical realism of the generated infrared
images. Unlike many traditional models such as CycleGAN or Pix2Pix, which rely
purely on data-driven mappings, our system incorporates physics-informed priors,
allowing for semantically and thermally consistent outputs.

Another major strength lies in the semantic understanding introduced via MSEG.
Compared to previous approaches where segmentation was either absent or rudi-
mentary, MSEG provides a robust understanding of the scene structure, improving
object-level translation accuracy—particularly for complex classes such as humans,
vehicles, and infrastructure.

Generalization to out-of-distribution data has also been a notable achievement.
The model has shown reliable performance on test images captured in real-world
scenarios, even those featuring backgrounds or lighting conditions not present in
the training dataset.
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Despite these strengths, certain limitations persist. The system’s reliance on ac-
curate segmentation remains a key dependency. Errors in semantic maps can prop-
agate into the final output, reducing both structural accuracy and thermal plausibil-
ity. In addition, while the emissivity assignment improves realism, it is currently
heuristic-based and may not perfectly reflect material diversity in all scenes.

CONCLUSIONS AND FUTURE DIRECTIONS

This project set out to address the practical limitations of IR imaging systems,
particularly in resource-constrained platforms such as UAVs, by developing a deep
learning-based solution capable of synthesizing IR images from standard RGB in-
puts. The final system integrates semantic segmentation, physical emissivity mod-
eling, and a generative adversarial network to produce visually and physically con-
sistent IR outputs. In the future, segmentation and IR generation might be uni-
fied into a single model to reduce system complexity, heuristic emissivity mapping
might be replaced with learned material classification or multispectral estimation,
the model might be extended to accept video input to create frame-to-frame IR
generation for general surveillance footage, and the IR generation model can be
coupled with object detection algorithms for end-to-end surveillance or targeting
pipelines.

Overall, the project demonstrates that physically informed, data-driven models
can serve as effective alternatives to hardware-constrained IR systems. With contin-
ued development, this solution has strong potential for integration into real-world
defense and security applications.
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BEHIND THE SCENES
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